Large-scale Image Classi cation:
Fast Feature Extraction and SVM Training

Yuanging Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timotk@sr and Kai Yu
NEC Laboratories America, Cupertino, CA 95014

Liangliang Cao and Thomas Huang
Beckman Institute, University of lllinois at Urbana-Chaamgn, IL 61801

Abstract of pixels to untrained computers, and the object it presents
Therefore, there have been extensive research efforts on
Most research efforts on image classication so far developing effective visual object recognizeis][Along
have been focused amedium-scaledatasets, which are the line, there are quite a few benchmark datasets for
often de ned as datasets that can t into the memory of a image classi cation, such as MNISTL], Caltech 101 ¢],
desktop (typically 4G48G). There are two main reasons Caltech 256 [1], PASCAL VOC [7], LabelMe[l9], etc.
for the limited effort onlarge-scaleimage classi cation. Researchers have developed a wide spectrum of different
First, until the emergence of ImageNet dataset, there local descriptors]/, 16, 5, 27], bag-of-words modelslf,
was almost no publicly available large-scale benchmark 24] and classi cation methods4], and they compared
data for image classication. This is mostly because to the best available results on those publicly available
class labels are expensive to obtain. Second, large-scaledatasets — for PASCAL VOC, many teams from all over
classi cation is hard because it poses more challenges the world participate in the PASCAL Challenge each year
than its medium-scale counterparts. A key challenge isto compete for the best performance. Such benchmarking
how to achieve ef ciency in both feature extraction and activities have played an important role in pushing object
classi er training without compromising performance. $hi ~ classi cation research forward in the past years.
paper is to show how we address this challenge using In recent years, there is a growing consensus that it
ImageNet dataset as an example. For feature extraction, weis necessary to build general purpose object recognizers
develop a Hadoop scheme that performs feature extractionthat are able to recognize many different classes of objects
in parallel using hundreds of mappers. This allows us — e.g. this can be very useful for image/video tagging
to extract fairly sophisticated features (with dimensions and retrieval. Caltech 101/256 are the pioneer benchmark
being hundreds of thousands) on 1.2 million imagéhin datasets on that front. Newly released ImageNet datéket [
one day For SVM training, we develop a parallel goes a big step further, as shown in Fig— it further
averaging stochastic gradient desqg@y8GD) algorithm for increases the number of classes to 20@Md it has more
training one-against-all 1000-class SVM classi ers. The than 1000 images for each class on average. Indeed, it is
ASGD algorithm is capable of dealing with terabytes of necessary to have so many images for each class to cover
training data and converges very fast — typically 5 epochs visual variance, such as lighting, orientation as well as
are sufcient. As a result, we achieve state-of-the-art fairly wild appearance difference within the same class —

performance on the ImageNet 1000-class classi cati@n, like different cars may look very differently although all
52:9% in classi cation accuracy and’1:8% in top 5 hit belong to the same class.
rate. However, compared to those previous medium-

scale datasets (such as PASCAL VOC datasets and
Caltech10& 256, which can t into desktop memory),

1. Introduction large-scale ImageNet dataset poses more challenges in
image classi cation. For example, those previous datesets

It is needless to say how important of image clas- — . m 4 . e
]) . P . The overall ImageNet dataset consists of 11,231,732 lddslages
si cation/recognition is in the eld of computer vision of 15589 classes by October 2010. But here we only concerntahe

- imag? recognition is es_,sential fO!’ br_idgi.ng the huge gypset of ImageNet dataset (about 1.2 million images) tizat used in
semantic gap between an image, which is simply a scatter2010 ImageNet Large Scale Visual Recognition Challenge

1689

ImageNet
1000

Dense grid descriptor:
HOG, LBP

600 *

Coding: local coordinate,
super-vector

800 ‘

of classes

400

Caltech256 *
p Caltech101
PASCAI(_) o MNIST
0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M
of data samples Figure 2. The overview of our large-scale image classi@ati

system. This system represents an image using a bag-osword
Figure 1. The comparison of ImageNet dataset with othertbenc (Bow) model and performs classi cation using a linear SVM
mark datasets for image classication. ImageNet dataset is classi er. Given an input image, the system rst extractsiske
signi cantly larger in terms of both the number of data saespl |ocal descriptors, HOGH] or LBP (local hinary pattern 7).
and the number of classes. Then, each local descriptor is coded either using localdinate
coding (LCC) p6] or Gaussian model supervector coding]f

. . . . The codes of the descriptors are then passed to weightethgool
have at most 30,000 or so images, and it is still feasible to max-pooling with spatial pyramid matching (SPM) to form a

exploit kernel methods for training nonlinear classi ers, yector for representing the image. Finally, the featurdoris fed

which often provide state-of-the-art performance. In tg 3 linear SVM for classi cation.

contrast, the kernel methods are prohibitively expensive

for ImageNet dataset that consists of 1.2 million images.

Therefore, a key new challenge for the ImageNet large- large-scale imageNet dataset is not easy. For the reported

scale image classication is how to efciently extract best performers on the medium-scale dataséts 4],

image features and train classi ers without compromising €xtracting image features on one image takes at least a

performance. This paper is to show how we addresscouple of seconds (and even minutes]]. Even if it

the challenge and achieve so far the state-of-the-arttakes 1 second per image for feature extraction, in total

classi cation performance on the ImageNet dataset. it would take1:2 10° seconds 14 days. Even more
The major contribution of this paper is to show how to challengingis SVM training. Let's use PASCAL VOC 2010

train an image classi cation system on large-scale dasaset for comparison. The PASCAL dataset consists of about

in a system level. We develop a fast feature extraction 10,000 images in 20 classes. To our experience, training

scheme using Hadoop []. More importantly, we develop ~ SVM for this PASCAL dataset (e.g. using LIBLINEARY])

a para”e] averaging stochastic gradient descent (ASGD)WOUld take more than 1 hour if we use the features that

algorithm with proper step size scheduling to achieve fastare employed in those state-of-the-art methods (without

SVM training. dimensionality reduction, e.g., by kernel trick). This mea
we would need at least 50 120hours= 250 days
2. Classi cation system overview in computation — not counting the often most painful part,

memory constraints and le 1/O bottlenecks. Indeed, we
For ImageNet large-scale image classi cation, we em- need new thinking on existing algorithms: mostly, more
ploy a classi cation system shown in Fig. This system parallelization and ef ciency for computation, and faster
follows the approaches described in a number of previousconvergence for iterative algorithms, particularly, SVM
works [24, 28] that showed state-of-the-art performance training. In the following two sections, Sectich and
on medium-scale image classi cation datasets (such asSection4, we will show how to implement the new thinking
PASCAL VOC and Caltech1@1256). Here, we attempt into image feature extraction and SVM training, which are
to integrate the advantages from those previous systemsthe two major functional blocks in our classi cation system
The contribution of this paper is not to propose a new (as shown in Fig2).
classi cation paradigm but to develop ef cient algorithms
to gain similar performance otarge-scale ImagetNet 3. Feature extraction
dataset as those achieved by the state-of-the-art metimods o
medium-scale datasets. As shown in Fig2, given an inputimage, our system rst
Extending the methods for medium-scale datasets toextracts dense HOG (histogram of oriented gradiefis [

1690

and LBP (local binary patterr2}]) local descriptors. Both 2. Ensure tight approximation: solve the optimization
features have been proven successful in various vision problem
tasks such as object classi cation, texture analysis aod fa

H 2. H — 1.
recognition, etc. HOG and LBP are complementary in the min kz B, ;k% subjectto ;e=1; (1)
sense that HOG focuses more on shape information while .
LBP emphasizes texture information within each patch. wheree is a vector of ones. The problem has a closed

The advantage of such combination was also reported in form solution.

[27] for human detection task. For images with large than the coding result 2 RP of z is obtained by placing

size, we downsize them to no more than 500 pixels atyye elements of , into the corresponding positions of

either side. Such normalization not only considerably 5 , jimensional vector and leaving the rest to be zeros.
reduces computational cost, but more importantly, makesThe algorithm can be seen as one way of sparse coding,
the representation more robust to scale difference. We usegyoc4,se is very sparse. But the implementation is much

three scales of patch size for computing HOG and LBP, simpler and the computation is much faster than traditional

n_amely, 1(_5 163 24 24 and 32 32'_ The multiple patch sparse coding, because there is no need to solve the L1-
sizes provide richer coverage of different scales and make, ., regularized optimization problem. On the other hand,

the features more invariant to scale changes. we empirically nd that the performance of this simple
After extracting dense local image descriptors, denoted| cc coding is often comparable or better than traditional

d ~ . 1 ~ . 1 4 A A . o
byz 2 Rf, we perform the “coding’ and "pooling’ steps, as gparse coding for image classi cation. In addition, the
shown in Fig.2, where the coding step encodes each local 5igorithm can also be explained as a simple extension of

descriptorz via a nonlinear feature mapping into a New ecior quantization (VQ) coding, which can be recovered
space, then the pooling step aggregates the coding resultgy setting =1.

fallen in a local region into a single vector. We apply two

state-of-the-art “coding + pooling' pipelines in our syste ~ 3.2. Super-vector Coding (SVC)
one is based on local coordinate coding (LCE¥][and
the other is based on super-vector coding (SVA]).[For
simplicity, we assume the pooling is global. But spatial
pyramid pooling is simply implemented by applying the
same operation independently within each partitionediloc
of images. 1. Findz's nearest basis vector B, whose index is =

argmin; kz b k?;

SVC is another way to extend VQ, which explores
the geometry of data distribution. Suppose a codebook
B =[by:ibp] 2 RY P is obtained by running K-means
algorithm. For a descriptar, the coding procedure is

3.1. Local Coordinate Coding (LCC)
2. Obtain the VQ coding 2 RP, where itsi-th element

.) . X)) . is one, and all others are zeros.
d is the dimensionality of descriptorsandp is the size of

the codebook. Like many coding methods, LCC seeks a 3. Obtain the SV coding result

linear combination of bases B to reconstruckz, namely h i

z B ,andthenuse the coef cientsas the coding result = 1S, 1(z b)) iiops; p(z b))
for z. Typically is sparse and its dimensionality is higher 2)
than that oz. We note that the mappingz) fromzto is

usually nonlinear. The theory of LCC points out that, under ;..o 5 R(d+1) P, ands is a prede ned small constant.

a mild man@fold assumption, a good coding should satisfy The SVC can be seen as expanding VQ with local tangent
two properties: directions, and is thus a smoother coding scheme.
At the pooling step, a linear pooling method has been

derived by smoothing the Bhattacharyya kernel. Zet

The coding should be suf ciently local — only those ~ [Z]'=1 be the set of local descriptors of an image, and

bases close tp are activated: [i]lt; be their SV codes. Assignirg into thosep vector

guantization bins, pe partitiod into p groups, with sizes

Based on the theory, we develop a very simple algorithm proportional to! ¢, ;- ! « = 1. Then the pooling result
here. We rst use K-means algorithm to learn a codebook for this image is
B and then for encoding do the following:

The approximatior B s suf ciently accurate;

11X 1
1. Ensure suf cient locality: ndz's nearest neighbors x= n - pm b
in B, typically = 20, and denote the found bases as =
B,2RY ; where (i) indicates the index of the group belongs to.

1691

Sets Coding scheme Descriptor | Coding dimension | SPM | Feature dimension | Data set Size(GB)
1 HOG+LBP 8,192 10 81,920 167*
2 Local coordinate coding HOG 16,384 10 163,840 187*
3 HOG+LBP 20,480 10 204,800 260*
4 HOG 32,768 8 262,144 1374
5 Super-vector coding | HOG+LBP 51,200 4 204,800 1073
6 HOG 65,536 4 262,144 1374

Table 1. Extracted feature sets from ImageNet images for #dMing. The datasets withwere compressed to reduce data size.

3.3. Parallel feature extraction nal classi cation. However, even training SVM for the
smallest feature set here (about 160 GB) would not be
easy. Furthermore, because the ImageNet dataset has 1000
categories, we need to train 1000 binary classi ers — the
decision of using one-against-all SVMs is because training

a joint multi-class SVM is even harder and may not have
signi cant performance advantage. To our best knowledge,
training SVMs on such huge datasets with so many classes

Depending on coding settings, the computation time for
feature extraction of one image ranges from 2 seconds
to 15 seconds on a dual quad-core 2GHz Intel Xeon
CPU machine with 16G memory (single thread is used
in computation). To process 1.2 million images, it
would take around 27 to 208 days. Furthermore, feature
extraction yields terabytes of data. It is very dif cult

. . _has never been reported before.
for a single computer to handle such huge computation Althouah there exist manv off-the-shelf SVM
and such huge data. To speedup the computation and 9 ot y t
Solvers, such as SV#Pt [17, sSvmret [13 or

accommodate the data, we choose Apache Hadaap [. .

— . . LibSVM/LIBLINEAR [8], they are not feasible for such
to distribute computation over 20 machines and store dat - .
on Hadoop distributed le system (HDFS). Hadoop is an uge training data. This is because most of them are batch

; :) . _methods, which require to go through all data to compute

open source implementation of MapReduce computation . :) . . X
framework and a distributed le systen8]] Because gradient in each iteration and often_ neec_i many iterations
there is no interdependence in feature extraction tasks,(hundredS or even thousands of iterations) to reach a
MapReduce computation framework is very suitable for reasonable solution. Even worse, most off-the-shelf batch

feature extraction. The HDFS distributes images over all type SVM solvers require to pre-load training data into

. . : emory, which is impossible given the size of the training
machines and performs computation on the images locate .
. S . ; data we have. Therefore, such solvers are unsuitable for
at local disks, which is called colocation. Colocation

. . our SVM training. Indeed, LIBLINEAR recently released
can speedup the computation by reducing overall network : - .
i ._an extended version that explicitly considered the memory
I/O cost. The most important advantage of Hadoop is .

that, it provides a reliable infrastructure for large scale issue ps]. We tested it with a simpli ed image feature

computation. For example, a task can be automaticallySet (HOG descriptor only with coding dimension of 4,096,

o which generated 80GB training data). However, even
restarted if it encounters some unexpected errors, such as

: on such a small dataset (as compared to our largest one,
network issues or memory shortage. In our Hadoop cluster,

. 1.37TB), the LIBLINEAR solver was not able to provide
we only use 6 workers on each machine because of some

S . . useful results after 2 weeks of running on a dual quad-core
Itlorrtw;tlatlon of the machines. Thus, we have 120 workers in 2GHz Intel Xeon CPU machine with 16G memory. The

. . slowness of the LIBLINEAR solver is not only due to
We totally extracted six sets of features, as shown in its inef cient inner-outer loop iterative structure butsal
Table1l. With the help of Hadoop parallel computing, the P

. _because it needs to learn as many as 1000 binary classi ers.
feature sets took 6 hours to 2 days to compute, dependmgl’herefore we need a (much) better SVM solver, which
on coding settings. ' '

should be memory ef cient, converge fast and have some
4. ASGD for SVM training parallelization scheme to train 1000 binary classiers
in parallel. To meet these needs, we propose a parallel

After feature extraction, we ended up with terabytes averaging stochastic gradient descg@SGD) algorithm

of training data, as shown in Tablé. In general, the fortraining SVM classi ers.

features by LCC are sparse even after pooling and they

are much smaller than the ones generated by supervector

coding. The largest feature set is 1.37 terabytes and non- Let's use binary classi cation as an example for de-

sparse. While one may concatenate those features to learscribing the ASGD algorithm. We have training data that

an overall SVM for classi cation, we train SVMs separately consists ofT feature-label pairs, denoted &%;y:g/-; ,

for each feature set and then combine SVM scores to yieldwherex; is ad 1 feature vector representing an image

.1. Averaging stochastic gradient descent

1692

andy; 2f 1;+1gisthe label of the image. Then, the cost popular. We believe there are two main reasons. First,
function for binary SVM classi cation can be written as the ASGD algorithm achieves asymptotic convergence
property (to gain similar performance as the second-order
stochastic gradient descent) only when the number of data
samples is suf ciently large. In fact, with insuf cient
data samples, ASGD can be inferior to regular SGD.
This probably explains — it may not be able to observe
the superiority of the ASGD method when dealing with
medium-scale data. Second, for the ASGD algorithm
wherew isd 1 SVM weight vector, (nonnegativescalar) to achieve fast convergence, the step sizeeeds to be

is a regularization parameter, ahdscalar) is a bias term. carefully scheduled. We adopt the following step size

-
1

L (w; b;xt;yt)
t=1

Ekwk2+ max 0;1 y (W x;+ b) ;(3)
t=1

Then, the gradient of andb are scheduling 23:
wooyixe if <1 _ 1 .
ruluibixiy)= S Bcsars ”
ye if (<1 where ¢ (e.g. o = 10 ?), andc are some positive
roL(wibixegy) = if 1 @ constants, and they are problem-dependent. Typical values
‘ for c are 1 or 2/3. Our analysis (not shown in this paper
where = yi(wTx; + b) is the margin of the data pair ~ for brevity) shows that it is a good strategy to seto be
fXt;y10. the smallest eigenvalue of the Hessian matrix of a stoahasti
The proposed ASGD algorithm is a modi cation of con- objective function. Therefore, for solving the SVM problem
ventional stochastic gradient descent (SGD) algoriths [in Eq.3, we set = for the step size in Ed.
27). For conventional SGD, training data are fed to the There is an important implementation trick to signif-
algorithm one by one, and the update rule vorandb cantly reduce the computation cost at each iteration of
respectively are ASGD. A plain implementation of ASGD would need

ve scalar-vector multiplications or dot products at each

iteration: one for computing margin, two for updating

bk = b1+ yy (5) (Eq.5) and two for averaging (E®). We choose to perform
the following variable transform:

Wy = (1)Wt 1+t YiXt

if margin ¢ is less thari; otherwisew; = (1 Wy g
andb = b ;. The parameter is step size. The above Wy = P{;lvt
SGD_aIgorithm is easy to implement, but it often takes many Wi = PLive+ Ploug 8)
iterations to reach a good solution. ’ ‘
The ASGD algorithm is to add an averaging scheme to h _ P 0 isa2 2 proiecti .
the above SGD algorithm. The averaging scheme is whereP; = P, P, ISa projection matrix,
andv; andu; are updated in the following manner:
we = (1 Wy 1+ Wy
h o= @ Ob i+ b (6) Ve = Vea® YiRuaxe
_ _ Ur = Up 1+ Ye(Rar+ tR22)Xe; 9
where (e.g. { = 1=t) is averaging parameter. Note that
Fhe averaging scheme does not aﬁgct the SGD updf';\te ru'%vhereRt - R:l;l ? =p, Y andP, = TP, ;
in Eq. 5, and the averaged SVM weights;r andbr, will R21 Rap
be output as the result of SVM training, net andbr . 1 0

with Ty = with P 1 being an

The ASGD algorithm is known to have potential to (1) 1 t
achieve the theoretically optimal performance of stodbast identity matrix,w; = v; andw; = uj. Itis easy to check
gradient descent algorithms. It was shown that, asymptot-that the update in E@ is equivalent to the update in ES.
ically the ASGD algorithm is able to achieve similar con- and Eq.6 but with onlythreescalar-vector multiplications
vergence rate as second-order stochastic gradient desce@r dot products: one for computing margin, and two for
algorithm [Lg], which is often much faster than its rst- the computation in Eq9 — the transform in Eg8 is not
order counterpart. However, unlike the second-order SGDcomputed until the last iteration when to output result.
that ne_eds_ to compute Fhe inverse of Hessian matrix, the4.2. Parallel training
averaging is extremely simple to compute.

Despite the fact that the ASGD method has the potential ~ Another important issue is how to parallelize the com-
to converge fast and is simple to implement, it has not beenputation for training 1000 binary SVM classi ers?]|

1693

Apparently, the training of the binary classi ers can be 0

done independently. However, in contrast to the case
where a single machine is used to train all classi ers and o e cm----®
the major bottleneck is on computation, using a large w---
number of machines for training will suffer from le I/O el ” .
bottleneck since one of our training datasets is as large as %
1.37 terabyte. If the le 1/O bandwith is 20MB/second, g -9

. . . = - -0~
simply loading/copying the dataset would take 19 hours. © e
Therefore, we hope to load data as less times as possible ° 50 o
while not incurring the computation bottleneck. /' p—

Our strategy here is to do memory sharing on each mul- asp o7 - B - Averaging SGD

ticore machine. Each machine launches several programs i
to train different subset of the 1000 binary classi ers, and 40 . s - .
the programs are synchronized to train on the same chunk of Epochs

training data. The training data is shared by all the program Figure 3. The convergence comparison between ASGD and
on a machine through careful memory sharing. Therefore, reguiar SGD.

the multiple programs only need to load data once (for
each epoch). Such memory sharing scheme signi cantly
reduces le loading trafc and speeds up SVM training 140
dramatically.

Histogram of top 5 accuracy

120

5. Results 100

5.1. The performance of ASGD method for SVM 80
training

60

As aforementioned, the major challenge of the large-
scale ImageNet classi cation is on training SVMs with
terabytes of training data and as many as 1000 categories. 20
This paper proposes a parallel ASGD method that is aimed
to have fast convergence and parallel computation. Fig. % 0.2 0.4 056 058 1
shows the convergence comparison between the ASGD heeuraey
method and the regular SGD method. Both methods wereFigure 4. The histogram of the top 5 hit rate of the 1000 classe
performed on the dataset 5 in Talile it is about 1 terabyte ~ ImageNet dataset.
in total. We see that the ASGD method converged very fast.
It reached fairly good solution after 5 iterations. In casty
SGD (without averaging) converges much more slowly. It
would take tens of iterations to reach a similarly good
solution. For this speci ¢ dataset, each epoch took about 20
hours on three 8-core machines (only 6 programs running
in parallel on each machine due to some limitations).
Therefore, ASGD took about 4 days to nish SVM training
while the regular SGD would have taken weeks if not
months.

40

Indeed, we see a huge improvement in performance from
the baseline that was reported recently {vhich achieved
about20%in classi cation rate. Fig4 shows the histogram

of the top 5 hit rate on 1000 classes. We see that the top 5 hit
rate is mostly concentrated in the range&6f 90%while

it is over 90% for some classes but belo80% for some
other classes. The easy classes include odometer, monarch
buttery, cliff dwelling, lunar crater, bonsai, trolleylsy
geyser, snowplow, etc; the dif cult classes include China
5.2. ImageNet classi cation results tree, logwood tree, shingle oak, red beech, cap opener,
Kentucky coffee tree, teak, alder tree, iron tree, grask, pin

With the proposed ASGD method and 12 eight-core etc. The detailed top 5 hit rate for each of the 1000 classes
machines, we were able to train 1000-class SVM classi ers js jj|lustrated in Fig5.

for all those 6 feature sets listed in Tabl& within one

week Classi cation on ea_ch feature ;et outputs_ a set of 6. Discussion

SVM sores, and we combined them linearly to yield nal

prediction. We have shown how to train an image classi cation
As a result, our classi cation system achievB& 9% system on the large-scale ImageNet dataset (1.2 million im-

in classi cation accuracy and1:8% in top 5 hit rate. ages) with many classes (1000 classes). We achieved state-

1694

of-the-art performance on the ImageNet datas&?:.9% [12] T. Joachims. Making large-scale svm learning prattica

in classi cation accuracy an@1:9% in top 5 hit rate. LS8-Report, 24, Universitt Dortmund, LS VIlI-Report,
The key factors in our system are fast feature extraction 1998.

and SVM training. We developed a parallel averaging [13] T. Joachims. Training linear svms in linear time. Rio-
stochastic gradient descent (ASGD) algorithm for SVM ceedings of_ the ACM Conference on Knowledge Discovery
training, which is able to handle terabytes of data and 1000 _ and Data Mining 2006.

classes. [14] S. Lazebnik, C. Achmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing ndtura
scene categories. IfEEE Conf. on Computer Vision and
Pattern Recognitioyvolume 2, pages 2169-2178, New York

In this paper, we observed very fast convergence from
the ASGD algorithm. But we are still not able to

guantitatively connect the superior empirical perfornmeanc City, Junel7 - 22 2006.

with existing theoretical analysis, most of which focuses o [15] . L’eCun] L. Bottou, Y. Bengio, and P. Haffner. Gradient

analyzing the asymptotic convergence property of ASGD. based learning applied to document recognitidtroceed-

We will study how many training data samples would ings of the IEEE86:2278—2324, 1998.

be needed for ASGD to enter its asymptotic convergence[i6] D. G. Lowe. Distinctive image features from scale iri@at

regime. Meanwhile, we plan to systematically compare keypoints. Int'l Journal of Computer Vision60(2):91-110,

the ASGD method with other SGD methods (such as 2004.

Pegasos{(]) for large-scale image classi cation. [17] T. Ojala, M. Pietikainen, and D. Harwood. A comparative

study of texture measures with classi cation based on featu

References distributions.Pattern Recognition29:51-59, 1996.

[18] B. T. Polyak and A. B. Juditsky. Acceleration of stoctias

[1] http:/lyann.lecun.com/exdb/mnist/. approximation by averagingSIAM J. Control Optim 30,

[2] E.Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. July 1992.

Psvm: Parallelizing support vector machines on distrithute [19] B. C. Russell, A. Torralba, K. P. Murphy, and W. T.
computers. Advances in Neural Information Processing Freeman. Labelme: a database and web-based tool for image
Systems20:16, 2007. annotation.International Journal of Computer Visio@7(1-

[3] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and 3):157-173, 2008.

K. Olukotun. Map-reduce for machine learning on multicore. [20] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasgs: P
In Advances in Neural Information Processing Systems 19: mal estimated sub-gradient solver for svm. Aroceedings
Proceedings of the 2006 Conferengeage 281. The MIT of the 24th international conference on Machine learning
Press, 2007. ICML '07, 2007.

[4] C. Cortes and V. Vapnik. Support-vector networkéachine [21] T. White. Hadoop: The De nitive Guide O'Reilly Media,
Learning 20:273-297, 1995. Inc, 2010.

[5] N.Dalal and B. Triggs. Histograms of oriented gradiefots [22] S.Y. X. Wang, T. X. Han. An hog-lbp human detector with
human detection. ICVPR 2005. partial occlusion handling. IKCCV, 2009.

[6] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does [23] W. Xu. Towards optimal one pass large scale learning
classifying more than 10,000 image categories tell us? with averaged stochastic gradient descent. Technical lRepo
ECCV, 2010. 2009-L102, NEC Labs America.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, [24] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial
and A. Zisserman. The PASCAL Visual Object Classes pyramid matching using sparse coding for image classi ca-
Challenge 2010 (VOC2010) Results. http://www.pascal- tion. In IEEE Conference on Computer Vision and Pattern
network.org/challenges/VOC/voc2010/workshop/indaxlh Recognition 2009.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J [25] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large
Lin. Liblinear: A library for large linear classi cation.J. linear classi cation when data cannot tin memory. Rro-
Mach. Learn. Res9, June 2008. ceedings of the 16th ACM SIGKDD international conference

[9] L. Fei-Fei, R. Fergus, and P. Peron. Learning generative on Knowledge discovery and data minjiPD '10, 2010.
visual models from few training examples: an incremental [26] K. Yu, T.Zhang, and Y. Gong. Nonlinear learning usingdb

bayesian approach tested on 101 object categorid&HE. coordinate coding. INIPS' 09 2009.

CVPR 2004, Workshop on Generative-Model Based Vision [27] T. Zhang. Solving large scale linear prediction profue

2004. using stochastic gradient descent algorithmdroceedings
[10] R. Fergus, P. Perona, and A. Zisserman. Object class of the twenty-rst international conference on Machine

recognition by unsupervised scale-invariant learning. In learning ICML '04, 2004.

IEEE Conf. on Computer Vision and Pattern Recognition [28] X.Zhou, K. Yu, T. Zhang, and T. Huang. Image classi ceti

volume 2, pages 264-271, Wisconsin, WI, Junel6 - 22 2003. using super-vector coding of local image descriptors. In
[11] G. Grifn, A. Holub, and P. Perona. Caltech-256 object ECCYV, 2010.

category dataset. Technical Report 7694, Californiatunsti
of Technology, 2007.

1695

Figure 5. The top 5 hit rates on the 1000 categories in the éiagChallenge. The hit rate of each category is indicated t®d bar left
to the image representing the category.

1696

